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Abstract

The adsorption of the anionic dye congo-red (CR) by Na-, Cs-, Mg-, Al- and Fe-montmorillonite was

studied by simultaneous DTA-TG. Thermal analysis curves of adsorbed CR were compared with those

of neat CR. The oxidation of neat CR is completed below 570°C. Thermal analysis curves of adsorbed

CR show three regions representing dehydration of the clay, oxidation of the organic dye and

dehydroxylation of the clay together with the oxidation of residual organic matter. The oxidation of the

dye begins at about 250°C with the transformation of organic H atoms into water and carbon into char-

coal. Two types of charcoal are obtained, low-temperature and high-temperature stable charcoal. The

former gives rise to an exothermic peak in the second region of the thermal analysis and the latter in the

third region. The exchangeable metallic cation determines the ratio between the low-temperature and

high-temperature stable charcoal, which is formed. With increasing acidity of the exchangeable metal-

lic cation higher amounts of high-temperature stable charcoal are obtained. It was suggested that aro-

matic compounds π bonded to the oxygen plane of the clay framework are converted into charcoal,

which is burnt at about 550–700°C. With increasing surface acidity of the clay more species of CR are

protonated. Only protonated dye species can form π bonds with oxygen plane and are converted to

high-temperature stable charcoal during the thermal analysis. The thermal behavior of the dye complex

of Cu-montmorillonite is different probably due to the catalytic effect of Cu.
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Introduction

Thermal analysis curves of most organo-montmorillonite complexes, recorded either

in an oxidizing or an inert atmosphere, can be divided into three regions: (1) the re-

gion of dehydration of the clay, (2) the region of the thermal reactions of the organic

material and (3) the region of the dehydroxylation of the clay [1, 2].

The shape of the first region does not depend on whether the DTA is recorded in

an oxidizing or inert atmosphere. The thermal dehydration of the clay usually occurs

in the same temperature range in which clay samples, not treated with organic materi-
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als (untreated clays), lose most of their adsorbed water that is below 200 or 250°C.

With polyvalent exchangeable cations some water evolved at higher temperatures.

The dehydration is shown by an endothermic peak [3–5].

The shape of the second region depends on whether the DTA is recorded under

an oxidizing or inert atmosphere. In air this region represents the oxidation of the or-

ganic substances and the evolution of H2O, CO2 and NO2. The DTA curves show sev-

eral exothermic peaks, which are not observed under an inert atmosphere. Under the

latter conditions, broad endothermic peaks of pyrolysis are recorded [1, 2, 6].

The third region of the DTA curves of most organo-montmorillonites (above

550°C) is determined by the endothermic dehydroxylation of the clay, which is fol-

lowed by a small exothermic peak of the recrystallization of the meta-clay.

In some cases the oxidation of the organic matter is not completed in the tempera-

ture range of the second region and is traced in the third region by giving rise to new

peaks, which overlap the dehydroxylation of the clay mineral. Exothermic peaks of DTA

curves recorded in air are applicable for the study of the adsorption of organic com-

pounds by clay minerals. In most studies the DTA curves were used merely as finger-

prints for the identification of different associations obtained on the clay surface [1, 2, 6].

Simultaneous DTA-EGA study of cationic dyes adsorbed by Laponite and

montmorillonite showed that the oxidation of the organic matter in air started about

200°C with the evolution of H2O and CO2 and the formation of charcoal inside the

interlayer space [7].

In our laboratory characteristic DTA curves of montmorillonites loaded with

ionic and molecular aliphatic and aromatic amines were recorded. Aromatic amines

are characterized by their tendency to develop an exothermic peak in the third region

in addition to exothermic peaks in the second region. Unlike aliphatic complexes,

small exothermic peaks at this temperature persisted with the aromatic complexes

even when the total organic matter in the heating cell was very small [2, 7–10]. Aro-

matic compounds might be involved in π interactions with the oxygen plane of mont-

morillonite by accepting lone-pair electrons from O atoms into the π anti-bonding

orbitals of the aromatic rings [11].

From the collection of data of the thermal analysis of organo-montmorillonites,

it appears that two types of charcoal are obtained in the interlayer space. One type is a

low-temperature stable charcoal thermally oxidized in the second region of the ther-

mal analysis, below 550°C. The second type is a high-temperature stable charcoal ox-

idized in the third region of the thermal analysis, above 550°C [2].

It has been suggested that during the first step of the oxidation reaction when or-

ganic H is converted into water, the type of interactions between the adsorbed organic

compound and the adsorbing sites on the clay surface is responsible for the type of char-

coal, which is formed. Aromatic compounds πbonded to the framework oxygen plane of

the clay are converted into charcoal, which is burnt only at about 550–700°C.

In the present investigation we wish to examine the contribution of the πinterac-

tions between the oxygen plane and the aromatic rings and relate it to the appearance,

size and shape of an exothermic peak in the third region of the DTA curve.
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Congo-red (CR, Diphenyl-4,41-bis azo-2-naphthylamine-1-1-sulphonic acid-4),

shown in Scheme 1, was chosen for this purpose. In previous studies we showed that

this anionic bis-azo dye is adsorbed into the interlayer space of montmorillonite in

considerable amounts [12]. We also showed that in the interlayer space the dye ap-

pears in different varieties, e.g. anionic varieties, which may also be hydrogen

bonded to water molecules and in protonated varieties [13]. It is expected that the

protonated variety will, in part, form πbonds by accepting lone-pair electrons from O

atoms of the clay oxygen plane [11].

The differentiation between acidic and basic varieties was done by visible spec-

troscopy study. The ratio between the anionic and the protonated varieties depends on

the exchangeable metallic cation. In the spectrophotometric study we showed that

this ratio increases in the order Na, Mg, Cs, Cu, Al and Fe. According to Yariv [11],

the anionic variety does not form π bonds with the oxygen plane of the clay frame-

work. Since the net charge of the anionic-aromatic ring is slightly negative it cannot

accept electron pairs from the oxygen atoms into the π anti-bonding orbitals. For

these interactions to occur the aromatic species should be in part positively charged.

This can be achieved by the protonation of the anion. In conclusion, we will expect

that the surface acidity of the clay and the protonation of CR will affect the shape of

the DTA curve of the CR-clay complex. With stronger acidity one would expect that

the high temperature exothermic peak would be more pronounced.

Experimental

Materials

Congo-red (for microscopic grade) was supplied by Merck. According to the supplier

the dye content in the sample is 75% and the impurities are sodium sulfate and water.

No other impurities were detected by ICP and TLC analyses. Wyoming bentonite

(Na-montmorillonite) was supplied by Wards National Science Establishment, Inc. It

was ground and sieved to 80 mesh and the non-clay fraction was separated by sedi-

mentation. The original sample contained 74 mmol Na+ and 18 mmol Mg2+ plus Ca2+

per 100 g clay. Almost monoionic montmorillonites saturated with Na+, Cs+, Mg2+,

Cu2+, Al3+ and Fe3+ were prepared as follows: a portion of 10 g Wyoming bentonite

was dispersed in 800 mL water and stirred during two days. The stable clay suspen-

sion was separated from the sedimented micas, quartz and feldspar and 200 mL of

0.2 M aqueous solution of the respective chloride salt was added and the suspension
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was stirred. After two days the clay was washed several times by distilled water until

it was free of chloride (examined by AgNO3 solution).

Method

Preparation of CR-montmorillonite complexes

Each monoionic montmorillonite was treated with 65.0 mmol CR per 100 g clay

(air-dried). For this loading 4.0 mL of 9.75⋅10–3 M CR aqueous solution were added

into the 5.0 mL of the clay suspensions. Each suspension was treated for ten minutes

in ultrasonic bath before and after adding the dye. After 24 h the suspensions were

centrifuged for 30 min (8.000 rpm) and the supernatants were separated from the

sedimented clays.

Washing of CR-montmorillonite complexes

The separated clay sample was washed four times by adding 10 mL distilled water.

The mixture was shaken thoroughly and the water was separated by centrifugation.

The sediment was dispersed in 25 mL of water. After three months the aqueous phase

was separated. A new portion of 25 mL of water was added and the dispersed sedi-

ment was poured on a glass plate, on which it was air-dried for two days.

Thermal analysis

The dried CR-montmorillonite complexes were scratched from the glass plate. Si-

multaneous DTA–TG curves of 10 mg powdered samples were recorded in air using

a Shimadzu ‘DTG–50’ Instrument. Heating rate was 10°C per minute. To simplify

peak area determination, the baseline was corrected in such a way that the de-

hydroxylation endothermic peak was included in the exothermic area. This treatment

makes the dehydration peak area non-reliable.

Results

Thermal analysis of congo-red

Figure 1 shows the TG and DTG curves of neat CR. Water (9 mass%) is lost upon

heating up to 200°C, but most of it is evolved below 100°C, with a DTG peak at

70°C. The DTA curve demonstrates that this water-evolution reaction is endother-

mic. Mass loss (70 mass%) in the range 250–570°C, is due to the oxidation of the or-

ganic matter. The DTG curve shows five peaks indicating that this mass loss occurs in

five stages. The DTA curve proves that all these stages are exothermic. The residue

which remains at 570°C (20.5 mass%) is composed mainly of the salt Na2SO4 and

also Na2O obtained from the oxidation of CR, which is a sodium salt. A very slow

mass loss (0.5 mass%), which continues at higher temperatures is probably due to the

thermal decomposition of this salt.
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Thermal analysis of montmorillonites treated with congo-red

In the present paper we shall focus our attention on the second and third regions of the

DTA curves. The dehydration process, as effected by the adsorption of the anionic

dye, will be treated in a later paper.

Figures 2–6 show the DTA curves of CR complexes of Na-, Cs-, Mg-, Al- and

Fe-montmorillonite recorded in air atmosphere. The temperature range of each peak

and the maxima of the exothermic peaks are given in the figures. The figures demon-

strate that the thermal behavior of these montmorillonites shows significant similari-

ties but that the locations of the exothermic peaks depend on the exchangeable metal-

lic cation. All these curves can be divided into three regions, the dehydration region

below 225°C represented by an endothermic peak at about 74–90°C, the region of the

combustion reactions up to 550–595°C, represented by two exothermic peaks (la-

beled A and B) and the dehydroxylation region represented by an endothermic reac-

tion and three exothermic peaks (C, D and E). Peaks C and D probably are associated

with one exothermic reaction but they overlap the endothermic dehydroxylation of

the clay and appear therefore as two separate peaks.

The TG curves of these samples show that mass loss continues after the de-

hydroxylation process indicating that the oxidation of the organic matter continues at this
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Fig. 2 DTA curve of CR treated Na-montmorillonite

Fig. 1 TG and DTG curves of neat CR
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Fig. 3 DTA curve of CR treated Cs-montmorillonite

Fig. 4 DTA curve of CR treated Mg-montmorillonite

Fig. 5 DTA curve of CR treated Al-montmorillonite

Fig. 6 DTA curve of CR treated Fe-montmorillonite



stage (peak E). The thermal behavior of the CR complex of Cu-montmorillonite is differ-

ent (Fig. 7) probably due to the catalytic effect of Cu and will be described separately.

Table 1 Areas of exothermic peaks A, B, C, D and E (in %) relative to the total area of these peaks

Exchangeable cation
Peaks

A B C D E

Na 24.4 60.9 11.1 2.0 1.6

Cs 19.8 69.4 8.7 2.1

Mg 21.0 59.3 14.8 3.0 1.9

Al 12.6 51.9 25.8 9.7

Fe 5.6 42.6 34.9 14.0 2.9

In Table 1 the relative areas of the exothermic peaks are collected. By relative areas

it is meant the absolute area of the peak divided by the total area of all the exothermic

peaks. The table shows that the relative area of peak A decreases in the order Na, Mg, Cs,

Al and Fe. Peak B decreases in the order Cs, Na, Mg, Al and Fe whereas the relative area

of peaks C and D decreases in the reverse order. Peak A represents the first step of the ox-

idation of the organic matter. At this step the organic hydrogen is combined with the air

oxygen to form water [2, 7]. Only part of the carbon and nitrogen are combined with the

air oxygen at this stage. The other part is condensed to form charcoal or petroleum coke.

The decrease in the relative exothermic peak area from Na to Fe through Mg, Cs and Al

clay is equivalent to a decrease in the relative exothermic energy. We suggest that at this

stage a very small part of the carbon is oxidized to CO2 in Fe-montmorillonite and the rest

forms charcoal, whereas much of the carbon is oxidized to CO2 in Na-montmorillonite

and smaller amounts of charcoal are obtained. In the second and third steps of the exo-

thermic reaction, the charcoal is oxidized to CO2. Peak B represents the oxidation of

low-temperature stable charcoal whereas peaks C, D and E represent the oxidation of the

high-temperature stable charcoal. From Table 1 it is concluded that in the thermal analy-

sis of CR complexes of Na-, Cs- and Mg-montmorillonite the low-temperature stable

charcoal is the principal carbon product whereas in the thermal analysis of CR complex
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Fig. 7 DTA curve of CR treated Cu-montmorillonite. (There are no assignments of peaks
since the shape of this DTA curve differs from the shapes of the other curves)



of Fe-montmorillonite the high temperature stable charcoal is the principal product.

Al-montmorillonite shows an intermediate behavior.

Table 2 Mass loss (in mass%) during dehydration (first region of the DTA curves) and during
the air oxidation of the adsorbed congo-red and the dehydroxylation of the clay (second
and third regions of the DTA curves). Percentage was calculated on the basis of the final
mass of each sample at the end of peak E

Exchangeable
cation

Mass loss/%
Calculated

organic matter/
mmol/100 gDehydration

Peak Peaks C+D+E
and

dehydroxylation

Total
organic
matterA B

Na 15.4 3.0 4.5 10.7 14.9 25.3

Cs 11.2 3.2 13.7 14.6 28.2 43.9

Mg 19.2 5.5 12.2 16.9 31.3 48.0

Al 15.8 5.7 12.1 24.8 39.3 59.1

Fe 19.2 5.7 17.5 38.0 57.9 84.2

Thermal mass losses in mass percent were calculated from TG curves and are

presented in Table 2. Since each sample contains a different amount of organic matter

and a different amount of water, the percentage of mass loss was calculated on the ba-

sis of the mass of each calcined samples obtained at the end of peak E. Total mass

loss in the second and third regions is mainly due to the oxidation of the organic mat-

ter. In addition to the dehydration of montmorillonite in the first region, a small

amount of interlayer water is evolved in the second region. This occurs mainly with

the polyvalent exchangeable cations. At about 650°C the clay dehydroxylates. In Ta-

ble 2 the mass loss associated with peaks C, D and E are presented in one column be-

cause these peaks overlap together with the endothermic dehydroxylation mass loss.

It should be taken into consideration that the dehydration in the second region and

dehydroxylation in the third region are also responsible for the mass loss during the

oxidation of the organic matter. The information in Table 2 on the total organic mat-

ter from mass loss in the second and third regions can give a rough estimation on the

amount of the adsorbed dye. It is difficult to estimate the water-loss in the second re-

gion of the thermal analysis, because the water content changes with the organic mat-

ter. The dehydroxylation, on the other hand, can be determined from TG curves of

montmorillonites which were not treated with organic matter. We determined mass

loss of Na-montmorillonite non-treated with CR at 570–700°C and concluded that

the mass loss due to the dehydroxylation was 3.3% on the basis of dry-calcined mont-

morillonite. We assume a similar mass loss due to the dehydroxylation of the other

monoionic montmorillonites. This percentage was subtracted from the mass loss dur-

ing the third region of the thermal analysis. The calculated mass loss due to total or-

ganic matter is depicted in Table 2. Based on these data the loadings of the different

montmorillonites by CR (in mmol per 100 g clay) were calculated and are given in
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the Table (last column). The table shows that adsorption increases in the order Na,

Cs, Mg, Al and Fe. There are significant differences between the adsorption capacity

of the different montmorillonites obtained in the present study and those obtained

previously [12, 13]. As we mentioned previously, since CR is an anion and its adsorp-

tion takes place by a complicated mechanism, the adsorption capacity changes very

much with the experimental conditions.

Table 2 shows an increase in mass loss of the third thermal region in the order Na,

Cs, Mg, Al and Fe indicating that the amount of the high-temperature stable charcoal in-

creases in the same order. The Table shows that mass loss associated with peak A is

higher with the polyvalent cations compared with the monovalent cations. This is not in

agreement with our observations on the relative peak area (Table 1). We attribute this dif-

ference to the fact that the polyvalent cations keep the interlayer water to higher tempera-

tures and it appears that at this stage interlayer water is evolved together with the

CR-oxidation products.

In Table 3 the mass loss percentage was calculated relative to the estimated organic

matter. That means that the total mass loss of the organic matter was equal to 100 percent.

The Table shows that CR complexes of Na-, Cs- and Mg-montmorillonite lost more than

50 percent of the organic matter in the second region whereas CR complexes of Al- and

Fe-montmorillonite lost more than 50 percent of the organic matter only in the third re-

gion of the thermal analysis. This trend is similar to the trend represented in Table 1

where the relative exothermic peak areas are collected.

Table 3 Mass loss (in mass%) of organic matter (associated with exothermic peak) calculated
from TG curves on the basis of the final mass of each sample at the end of peak E rela-
tive to the total mass loss of organic matter

Exchangeable cation
Peaks

A B C+D+E

Na 20.1 30.2 49.7

Cs 11.4 48.6 40.0

Mg 17.6 39.0 43.4

Al 14.5 30.1 55.4

Fe 9.8 30.2 60.0

The thermal behavior of the CR complexes of Cu-montmorillonite is completely

different from that of other CR complexes of montmorillonite [12]. The DTA curve

does not show any separation between the second and third regions of the thermal

analysis. A very small exothermic peak appears at 265°C accompanied by a very

small mass loss of 1.1%. The onset temperature of the principal exothermic reactions

appears at 319°C. This reaction continues up to 680°C with a peak at 421°C and a

shoulder at 535°C. Mass loss percentage on the basis of calcined sample (determined

at the end of the highest temperature exothermic peak) are as follows: 318–361°C, 0.4%;

361–487°C, 4.4%; 487–676°C, 7.9%; 676–711°C, 1.4%; 711–875°C, 1.5%
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Discussion

The shape of the thermal curves of the neat CR depends on whether the dye anion is

non-adsorbed or adsorbed by the clay mineral. Comparing the thermal curves of the

neat CR with those of CR adsorbed on montmorillonite demonstrates that as a result

of adsorption the final oxidation of CR takes place at higher temperatures.

In previous studies of a combined EGA–DTA of montmorillonite complexes of the

cationic dyes acridine-orange and crystal-violet we showed that montmorillonite treated

with 100 mmol acridine-orange per 100 g clay gave a CO2 evolution curve with two

broad peaks at 480 and 670°C and CV treated montmorillonite showed three CO2 evolu-

tion peaks at 490, 590 and 675°C [14–16]. The latter peaks belong to the third region of

the DTA curve, occurring together with the dehydroxylation of the clay. These peaks are

very intense in the evolution curves of dye-montmorillonite complexes and are weak

shoulders in the evolution curves of dye-Laponite complexes. πinteractions are obtained

between the oxygen plane of montmorillonite and cationic dyes but not between the oxy-

gen plane of Laponite and the cationic dyes. It was therefore concluded that this high

temperature peak belongs to the oxidation of charcoal associated with these π interac-

tions. It is possible that the precursor of this high-temperature stable charcoal, namely the

cationic dye that was oxidized to give this fraction of charcoal, was π bonded with the

clay. By careful examination of the CO2 evolution curves published by Yariv et al.,
[14–16] one can see that the increase in loading of the clay by the dye up to 50 mmol dye

per 100 g clay was mainly shown by increase of the peaks belonging to the third stage of

the DTA curves. Increase in loading above 50 mmol dye per 100 g clay showed only a

small effect on the evolution peak at temperature above the dehydroxylation of the clay

but significant increase of the peaks belonging to the second stage. It is now known that

several types of interaction occur between the cationic dyes and the clay mineral. πinter-

actions between the cationic dyes and the oxygen plane of montmorillonite occur mainly

when the adsorption of the cationic dye is below 30–40 mmol dye per 100 g montmoril-

lonite. With higher loadings, other types of interaction between the cation and functional

groups on the clay surface are obtained. These data support our suggestion that peak B at

the second region of the thermal analysis is due to the oxidation of charcoal, which was

formed from aromatic compounds not associated with the oxygen plane by π interac-

tions, whereas the peaks in the third region (C, D and E) are due to the charcoal obtained

from aromatic compounds which were associated with π interactions.

In the present study there is a very good correlation between the surface acidity of

the different clay samples, as determined by the electronic spectroscopy study of the CR

complexes of montmorillonite, and the intensity of the exothermic peaks in the third re-

gion of the DTA curves. These observations support the idea that π interactions between

adsorbed aromatic compounds and O atoms from the oxygen plane are essential to the

formation of the high-temperature stable charcoal and the appearance of exothermic

peaks in the third region of the DTA curves of aromatic-montmorillonite complexes.
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